Memory of Germinant Stimuli in Bacterial Spores

نویسندگان

  • Shiwei Wang
  • James R. Faeder
  • Peter Setlow
  • Yong-qing Li
چکیده

UNLABELLED Bacterial spores, despite being metabolically dormant, possess the remarkable capacity to detect nutrients and other molecules in their environment through a biochemical sensory apparatus that can trigger spore germination, allowing the return to vegetative growth within minutes of exposure of germinants. We demonstrate here that bacterial spores of multiple species retain memory of transient exposures to germinant stimuli that can result in altered responses to subsequent exposure. The magnitude and decay of these memory effects depend on the pulse duration as well as on the separation time, incubation temperature, and pH values between the pulses. Spores of Bacillus species germinate in response to nutrients that interact with germinant receptors (GRs) in the spore's inner membrane, with different nutrient types acting on different receptors. In our experiments, B. subtilis spores display memory when the first and second germinant pulses target different receptors, suggesting that some components of spore memory are downstream of GRs. Furthermore, nonnutrient germinants, which do not require GRs, exhibit memory either alone or in combination with nutrient germinants, and memory of nonnutrient stimulation is found to be more persistent than that induced by GR-dependent stimuli. Spores of B. cereus and Clostridium difficile also exhibit germination memory, suggesting that memory may be a general property of bacterial spores. These observations along with experiments involving strains with mutations in various germination proteins suggest a model in which memory is stored primarily in the metastable states of SpoVA proteins, which comprise a channel for release of dipicolinic acid, a major early event in spore germination. IMPORTANCE Cellular memory is defined as a sustained response to a transient environmental stimulus, and yet its generation and storage have not been described in bacterial spores. We demonstrate here that bacterial spores of multiple species retain memory of transient exposures to germinant stimuli that can result in altered responses to subsequent exposure. Memory was induced by activation of germinant receptors (GRs) or by GR-independent germinants and was accessed by both GR-dependent and GR-independent germinants. Analysis of effects on memory of exposure to GR-dependent and GR-independent germinants as well as in spores lacking various germination proteins suggests a model in which memory is stored primarily in metastable states of SpoVA proteins which comprise a channel for release of spore dipicolinic acid. Spore memory can also significantly reduce the concentration of nutrient germinants necessary to trigger germination, and this may be used to respond to low levels of nutrient germinants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring of commitment, blocking, and continuation of nutrient germination of individual Bacillus subtilis spores.

Short exposures of Bacillus spores to nutrient germinants can commit spores to germinate when germinants are removed or their binding to the spores' nutrient germinant receptors (GRs) is inhibited. Bacillus subtilis spores were exposed to germinants for various periods, followed by germinant removal to prevent further commitment. Release of spore dipicolinic acid (DPA) was then measured by diff...

متن کامل

Inhibition of germinant binding by bacterial spores in acidic environments.

Commitment to germinate occurred in both Clostridium botulinum and Bacillus cereus spores during 0.5 min of exposure to 100 mM L-alanine or L-cysteine, measured by the inability of germination inhibitors (D form of amino acid) to inhibit germination. Spore germination at pH 4.5 was inhibited because the germinant did not bind to the trigger sites. C. botulinum spores exposed to 100 mM L-alanine...

متن کامل

Atomic force microscopy study of germination and killing of Bacillus atrophaeus spores.

Bacterial spores such as Bacillus atrophaeus are one of the most resistant life forms known and are extremely resistant to chemical and environmental factors in the dormant state. During germination, as bacterial spores progress towards the vegetative state, they become susceptible to anti-sporal agents. B. atrophaeus spores were exposed to the non-nutritive germinant dodecylamine (DDA), a cati...

متن کامل

Levels of germination proteins in dormant and superdormant spores of Bacillus subtilis.

Bacillus subtilis spores that germinated poorly with saturating levels of nutrient germinants, termed superdormant spores, were separated from the great majority of dormant spore populations that germinated more rapidly. These purified superdormant spores (1.5 to 3% of spore populations) germinated extremely poorly with the germinants used to isolate them but better with germinants targeting ge...

متن کامل

Bacillus cereus Spores Release Alanine that Synergizes with Inosine to Promote Germination

BACKGROUND The first step of the bacterial lifecycle is the germination of bacterial spores into their vegetative form, which requires the presence of specific nutrients. In contrast to closely related Bacillus anthracis spores, Bacillus cereus spores germinate in the presence of a single germinant, inosine, yet with a significant lag period. METHODS AND FINDINGS We found that the initial lag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015